
Programming is a process of problem solving

• Problem solving techniques

� Analyze the problem

� Outline the problem requirements

� Design steps (algorithm) to solve the problem

Algorithm:

� Step-by-step problem-solving process

� Solution achieved in finite amount of time

Problem Solving Process

• Step 1 - Analyze the problem

� Outline the problem and its requirements

Thoroughly understand the problem

Understand problem requirements

Does program require user interaction?

Does program manipulate data?

What is the output?

If the problem is complex, divide it into subproblems

Analyze each subproblem as above

� Design steps (algorithm) to solve the problem

• Step 2 - Implement the algorithm

� Implement the algorithm in code

� Verify that the algorithm works

• Step 3 - Maintenance

� Use and modify the program if the problem domain changes

What is an algorithm?

• The idea behind the computer program

• Stays the same independent of

� Which kind of hardware it is running on

� Which programming language it is written in

• Solves a well-specified problem in a general way

• Is specified by

� Describing the set of instances (input) it must work on

� Describing the desired properties of the output

• Before a computer can perform a task, it must have an algorithm that tells it what to do.

• Informally: “An algorithm is a set of steps that define how a task is performed.”

• Formally: “An algorithm is an ordered set of unambiguous executable steps, defining a

terminating process.”

� Ordered set of steps: structure!

� Executable steps: doable!

� Unambiguous steps: follow the directions!

� Terminating: must have an end!

Important Properties of Algorithms

• Correct

� always returns the desired output for all legal instances of the problem.

• Accurate

� It shouldn’t be ambiguous (each step in the algorithm should exactly determine the

action to be done).

• Finite

� has to end up at a point (after finite amount of steps) at which the task is complete

• Efficient

� Can be measured in terms of time, space

� Time tends to be more important

Representation of Algorithms

• A single algorithm can be represented in many ways:

• Formulas: F = (9/5)C + 32

• Words: Multiply the Celsius by 9/5 and add 32.

• Flow Charts.

• Pseudo-code. (Pseudocode is like a programming language but its rules are less

stringent.)

• In each case, the algorithm stays the same; the implementation differs!

� A program is a representation of an algorithm designed for computer applications

� Process: Activity of executing a program, or execute the algorithm represented by

the program

Flowchart

• It is another way to display the

• It is composed of special geometric symbols connected by lines and contain the instructions.

You can follow the lines from one symbol to another, executing the instructions inside it

Flowchart Symbols

• Start / End symbol

• Input/Output symbol

• Processing symbol

• Condition & decision symbol

• Continuation (connection symbol)

• Links

The algorithm would consist of at least th

 1- Input (Read the data)

 2- Processing (Perform the computation)

 3- Output (Display the results)

Procedural vs object-oriented

Procedural : Pascal Object

It is another way to display the algorithm.

It is composed of special geometric symbols connected by lines and contain the instructions.

You can follow the lines from one symbol to another, executing the instructions inside it

Condition & decision symbol

Continuation (connection symbol)

The algorithm would consist of at least the following tasks:

Input (Read the data)

Processing (Perform the computation)

Output (Display the results)

oriented

Object -oriented: Delphi, C++, Java

It is composed of special geometric symbols connected by lines and contain the instructions.

You can follow the lines from one symbol to another, executing the instructions inside it

In old style programming, you had:

• data, which was completely passive

• functions, which could manipulate any data

Object-oriented programming (OOP) is a programming paradigm where an object contains both

data and methods that manipulate that data

• Objects are not passive. Objects, which are usually instances of classes, are used to interact

with one another to design applications and computer programs.

• The data that represent the object are organized into a set of properties.

• The values stored in an object’s properties at any one time form the state of an object.

In object-oriented programming, the programs that manipulate the properties of an object are the

object’s methods. Methods are functions and procedures that apply only to objects of a particular

class and its descendants.

• A class is a group of objects with the same properties and the same methods.

• Each copy of an object from a particular class is called an instance of the object.

• The act of creating a new instance of an object is called instantiation.

OOP – main principles

Inheritance

� Inheritance allows child classes inherits the characteristics of existing parent class

� Attributes (fields and properties)

� Operations (methods)

� Child class can extend the parent class

� Add new fields and methods

� Redefine methods (modify existing behavior)

� A class can implement an interface by providing implementation for all its methods

Abstraction

� Abstraction means ignoring irrelevant features, properties, or functions and emphasizing the

relevant ones - relevant to the given project (with an eye to future reuse in similar projects)

� Abstraction = managing complexity

Encapsulation

� Encapsulation hides the implementation details

� Class announces some operations (methods) available for its clients – its public interface

� All data members (fields) of a class should be hidden

� Accessed via properties (read-only and read-write)

� No interface members should be hidden

� Data fields are private

� Constructors and accessors are defined (getters and setters)

Polymorphism

� Polymorphism = ability to take more than one form (objects have more than one type)

� A class can be used through its parent interface

� A child class may override some of the behaviors of the parent class

� Polymorphism allows abstract operations to be defined and used

� Abstract operations are defined in the base class' interface and implemented in the

child classes

� For example, in a graphics application, we may have circle, square and triangle objects,

each of which could have a Draw method. This would look the same to the caller, but

each object would draw in a different way of course.

Integrated develompent environment

� An integrated development environment (IDE) or interactive development environment is

a software application that provides comprehensive facilities to computer programmers

for software development. An IDE normally consists of a source code editor, build

automation tools and a debugger. Most modern IDEs offer Intelligent code completion

feature.

� Integrated development environments are designed to maximize programmer productivity

by providing tight-knit components with similar user interfaces. IDEs present a single

program in which all development is done. This program typically provides many features for

authoring, modifying, compiling, deploying and debugging software.

Computer graphics

� The interaction and understanding of computers and interpretation of data has been made

easier because of computer graphics. Computer graphic development has had a significant

impact on many types of media and have revolutionized animation, movies and the video

game industry.

� Object-oriented concepts are particularly applicable to computer graphics – for example

animations, simulations etc.

Delphi

� Borland Delphi is a sophisticated Windows programming environment, suitable for beginners

and professional programmers alike. Using Delphi you can easily create self-contained, user

friendly, highly efficient Windows applications in a very short time - with a minimum of

manual coding

� Delphi provides all the tools you need to develop, test and deploy Windows applications,

including a large number of so-called reusable components.

Borland Delphi, in it's latest version, provides a cross platform solution when used with

Borland Kylix - Borland's RAD tool for the Linux platform.

� Delphi's roots lie in Borland's Turbo Pascal, introduced in the mid-1980s. Object Pascal, the

object-oriented extensions to Pascal, is the underlying language of Delphi. The Visual

Component Library, or VCL, is a hierarchy of Object Pascal objects that allow you to design

applications. A better way of describing Delphi is an Object Pascal-based visual development

environment.

� eleventh version, Delphi 2007 supports development in Object Pascal and C ++ for the Win32

platform; Object Pascal and C # for .NET.

Object Pascal, C++

� Object Pascal refers to a branch of object-oriented derivatives of Pascal, mostly known as the

primary programming language of Embarcadero Delphi.

� C++ is a general purpose programming language. It has imperative, object-

oriented and generic programming features, while also providing the facilities for low level

memory manipulation.

Program structure and syntax

� A complete, executable Delphi application consists of multiple unit modules, all tied together

by a single source code module called a project file. In traditional Pascal programming, all

source code, including the main program, is stored in .pas files. Borland tools use the file

extension .dpr to designate the main program source module, while most other source code

resides in unit files having the traditional .pas extension. To build a project, the compiler

needs the project source file, and either a source file or a compiled unit file for each unit.

The source code file for an executable Delphi application contains:

� program heading

� a uses clause (optioinal)

� block of declarations and executable statements.

The first line contains the program heading.

The $R compiler directive links the project's resource file into the program. Finally, the block of

statements between the begin and end keywords are executed when the program runs. The

project file, like all Delphi source files, ends with a period (not a semicolon).

The Program Heading

The program heading specifies a name for the executable program. It consists of the reserved

word program, followed by a valid identifier, followed by a semicolon. The identifier must match

the project source file name.

The following example shows the project source file for a program called greeting.

program greeting;

{$APPTYPE CONSOLE}

var MyMessage : string;

begin

MyMessage := 'Hello world!';

Writeln(MyMessage);

end.

The Program Uses Clause

The uses clause lists those units that are incorporated into the program. These units may in turn

have uses clauses of their own.

The uses clause consists of the keyword uses, followed by a comma delimited list of units the

project file directly depends on.

Declarations

Here we declare all variables (key word var) and constants (key word const) used in the

program.

• A variable is an identifier whose value can change at run time. Put differently, a variable

is a name for a location in memory; you can use the name to read or write to the memory

location. Variables are like containers for data, and, because they are typed, they tell the

compiler how to interpret the data they hold. Example:

• var

 X, Y, Z: Double;

 I, J, K: Integer;

 Digit: 0..9;

 Okay: Boolean;

• Right syntax for the variable names

Rules Wrong identifiers Right identifiers

Must not start with a number 1name name1

Dots are not allowed name.2 name_2

Dashes are not allowed -name-3 _name_3

Spaces are not allowed Variable name Variable_name

Accented characters are not allowed déjà_vu deja_vu

• The constants are similar to variables, except one point: they can't change their value

during the execution.

The Block

The block contains a simple or structured statement that is executed when the program runs. In

most program files, the block consists of a compound statement bracketed between the

reserved words begin and end, whose component statements are simply method calls to the

project's Application object. Most projects have a global Application variable that holds an

instance of TApplication, TWebApplication, or TServiceApplication. The block can also contain

declarations of constants, types, variables, procedures, and functions; these declarations must

precede the statement part of the block.

Components of the language

• Compiler directives

• Directives

• Keywords – reserved words

• Types

• Variables and Constants

• Functions

• Procedures

Types and declaration

� For those new to computer programming, data and code go hand in hand. You cannot write

a program of any real value without lines of code, or without data. A Word Processor

program has logic that takes what the user types and stores it in data. It also uses data to

control how it stores and formats what the user types and clicks.

� How to define a variable to Delphi:

 var // This starts a section of variables

 LineTotal : Integer; // This defines an Integer variable called LineTotal

 First,Second : String; // This defines two variables to hold strings of text

 Each variable starts with the name you choose, followed by a : and then the variable type. As

with all Delphi statements, a ; terminates the line. As you can see, you can define multiple

variables in one line if they are of the same type.

Number types

Delphi provides many different data types for storing numbers. Your choice depends on the data you

want to handle. Our Word Processor line count is an unsigned Integer, so we might choose

Word which can hold values up to 65,535. Financial or mathematical calculations may require

numbers with decimal places - floating point numbers.

 var

 // Integer data types :

 Int1 : Byte; // 0 to 255

 Int2 : ShortInt; // -127 to 127

 Int3 : Word; // 0 to 65,535

 Int4 : SmallInt; // -32,768 to 32,767

 Int5 : LongWord; // 0 to 4,294,967,295

 Int6 : Cardinal; // 0 to 4,294,967,295

 Int7 : LongInt; // -2,147,483,648 to 2,147,483,647

 Int8 : Integer; // -2,147,483,648 to 2,147,483,647

 Int9 : Int64; // -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

 // Decimal data types :

 Dec1 : Single; // 7 significant digits, exponent -38 to +38

 Dec2 : Currency; // 50+ significant digits, fixed 4 decimal places

 Dec3 : Double; // 15 significant digits, exponent -308 to +308

 Dec4 : Extended; // 19 significant digits, exponent -4932 to +4932

Text types

Like many other languages, Delphi allows you to store letters, words, and sentences in single

variables. These can be used to display, to hold user details and so on. A letter is stored in a single

character variable type, such as Char, and words and sentences stored in string types, such

as String.

 var

 Str1 : Char; // Holds a single character, small alphabet

 Str2 : WideChar; // Holds a single character, International alphabet

 Str3 : AnsiChar; // Holds a single character, small alphabet

 Str4 : ShortString; // Holds a string of up to 255 Char's

 Str5 : String; // Holds strings of Char's of any size desired

 Str6 : AnsiString; // Holds strings of AnsiChar's any size desired

 Str7 : WideString; // Holds strings of WideChar's of any size desired

Logical data types

These are used in conjunction with programming logic. They are very simple:

 var

 Log1 : Boolean; // Can be 'True' or 'False'

Boolean variables are a form of enumerated type. This means that they can hold one of a fixed

number of values, designated by name. Here, the values can be True or False.

Sets, enumerations and subtypes

Delphi excels in this area. Using sets and enumerations makes your code both easier to use and

more reliable. They are used when categories of data are used. For example, you may have an

enumeration of playing card suits. You literally enumerate the suit names. Before we can have an

enumerated variable, we must define the enumeration values. This is done in a type section.

 type

 TSuit = (Hearts, Diamonds, Clubs, Spades); // Defines the enumeration

 var

 suit : TSuit; // An enumeration variable

Sets are often confused with enumerations. The difference is tricky to understand. An enumeration

variable can have only one of the enumerated values. A set can have none, 1, some, or all of the set

values. Here, the set values are not named - they are simply indexed slots in a numeric range. Here

is an example to try to help you out. It will introduce a bit of code a bit early, but it is important to

understand.

 type

 TWeek = Set of 1..7; // Set comprising the days of the

week, by number

 var

 week : TWeek;

 begin

 week := [1,2,3,4,5]; // Switch on the first 5 days of the week

 end;

Assigning to and from variables

Variables can be assigned from constant values, such as 23 and 'My Name', and also from other

variables. The code below illustrates this assignment, and also introduces a further section of a

Delphi program : the const (constants) section. This allows the programmer to give names to

constant values. This is useful where the same constant is used throughout a program - a change

where the constant is defined can have a global effect on the program.

Note that we use upper case letters to identify constants. This is just a convention, since Delphi is

not case sensitive with names (it is with strings). Note also that we use = to define a constant value.

 types

 TWeek = 1..7; // Set comprising the days of the week, by

number

 TSuit = (Hearts, Diamonds, Clubs, Spades); // Defines an enumeration

 const

 FRED = 'Fred'; // String constant

 YOUNG_AGE = 23; // Integer constant

 TALL : Single = 196.9; // Decimal constant

 NO = False; // Boolean constant

 var

 FirstName, SecondName : String; // String variables

 Age : Byte; // Integer variable

 Height : Single; // Decimal variable

 IsTall : Boolean; // Boolean variable

 OtherName : String; // String variable

 Week : TWeek; // A set variable

 Suit : TSuit; // An enumeration variable

 begin // Begin starts a block of code statements

 FirstName := FRED; // Assign from predefined constant

 SecondName := 'Bloggs'; // Assign from a literal constant

 Age := YOUNG_AGE; // Assign from predefined constant

 Age := 55; // Assign from constant - overrides

YOUNG_AGE

 Height := TALL - 5.5; // Assign from a mix of constants

 IsTall := NO; // Assign from predefined constant

 OtherName := FirstName; // Assign from another variable

 Week := [1,2,3,4,5]; // Switch on the first 5 days of the week

 Suit := Diamonds; // Assign to an enumerated variable

 end; // End finishes a block of code statements

 FirstName is now set to 'Fred'

 SecondName is now set to 'Bloggs'

 Age is now set to 55

 Height is now set to 191.4

 IsTall is now set to False

 OtherName is now set to 'Fred'

 Week is now set to 1,2,3,4,5

 Suit is now set to Diamonds (Notice no quotes)

Note that the third constant, TALL, is defined as a Single type. This is called a typed constant. It

allows you to force Delphi to use a type for the constant that suits your need. Ohterwise, it will make

the decision itself.

Compound data types

The simple data types are like single elements. Delphi provides compound data types, comprising

collections of simple data types.

These allow programmers to group together variables, and treat this group as a single variable. When

we discuss programming logic, you will see how useful this can be.

Arrays

Array collections are accessed by index. An array holds data in indexed 'slots'. Each slot holds one

variable of data. You can visualise them as lists. For example:

 var

 Suits : array[1..4] of String; // A list of 4 playing card suit

names

 begin

 Suits[1] := 'Hearts'; // Assigning to array index 1

 Suits[2] := 'Diamonds'; // Assigning to array index 2

 Suits[3] := 'Clubs'; // Assigning to array index 3

 Suits[4] := 'Spades'; // Assigning to array index 4

 end;

The array defined above has indexes 1 to 4 (1..4). The two dots indicate a range. We have told Delphi

that the array elements will be string variables. We could equally have defined integers or decimals.

Records

Records are like arrays in that they hold collections of data. However, records can hold a mixture of

data types. Ther are a very powerful and useful feature of Delphi, and one that distinguishes Delphi

from many other languages.

Normally, you will define your own record structure. This definition is not itself a variable. It is called a

data type. It is defined in a type data section. By convention, the record type starts with a T to

indicate that it is a type not real data (types are like templates). Let us define a customer record:

 type

 TCustomer Record

 firstName : string[20];

 lastName : string[20];

 age : byte;

 end;

Note that the strings are suffixed with [20]. This tells Delphi to make a fixed space for them. Since

strings can be a variable length, we must tell Delphi so that it can make a record of known size.

Records of one type always take up the same memory space.

a record variable from this record type and assign to it:

 var

 customer : TCustomer; // Our customer variable

 begin

 customer.firstName := 'Fred'; // Assigning to the customer record

 customer.lastName := 'Bloggs';

 customer.age := 55;

 end;

 customer.firstName is now set to 'Fred'

 customer.lastName is now set to 'Bloggs'

 customer.age is now set to 55

Notice how we do not use an index to refer to the record elements. Records are very friendly - we use

the record element by its name, separated from the record name by a qualifying dot.

Objects

Objects are collections of both data and logic. They are like programs, but also like data structures.

They are the key part of the Object oriented nature of Delphi.

Other data types

The remaining main object types in Delphi are a mixed bunch:

Files

File variables represent computer disk files. You can read from and write to these files using file access

routines.

Pointers

They allow variables to be indirectly referenced. The Pointer type provides a general use pointer to

any memory based variable. That is, one that is accessed by reference.

Variants

They allow the normal Delphi rigid type handling to be avoided. Use with care!

