
A Simple Console Application

The program below is a simple console application that you can compile and run from the

command prompt:

 program Greeting;

 {$APPTYPE CONSOLE}

 var

 MyMessage: string;

 begin

 MyMessage := 'Hello world!';

 Writeln(MyMessage);

 end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells

the compiler that this is a console application, to be run from the command line. The next line

declares a variable called MyMessage, which holds a string. (Object Pascal has genuine

string data types.) The program then assigns the string "Hello world!" to the variable

MyMessage, and sends the contents of MyMessage to the standard output using

the Writelnprocedure. (Writeln is defined implicitly in the System unit, which the

compiler automatically includes in every application.)

After you compile the program, the resulting executable prints the message Hello world!

Aside from its simplicity, this example differs in several important ways from programs that

you are likely to write with Appmethod development tools. First, it is a console application.

Appmethod development tools are most often used to write applications with graphical

interfaces; hence, you would not ordinarily call Writeln. Moreover, the entire example

program (save for Writeln) is in a single file. In a typical GUI application, the program

heading and the first line of the example would be placed in a separate project file that would

not contain any of the actual application logic, other than a few calls to routines defined in

unit files.

A More Complicated Example

The next example shows a program that is divided into two files: a project file and a unit file.

The project file, which you can save as greeting.dpr, looks like this:

 program Greeting;

 {$APPTYPE CONSOLE}

 uses

 Unit1;

 begin

 PrintMessage('Hello World!');

 end.

The first line declares a program called greeting, which, once again, is a console

application. The uses Unit1; clause tells the compiler that the

program greeting depends on a unit called Unit1. Finally, the program calls

the PrintMessage procedure, passing to it the string Hello

World! The PrintMessage procedure is defined in Unit1. Here is the source code

for Unit1, which must be saved in a file called Unit1.pas:

 unit Unit1;

 interface

 procedure PrintMessage(msg: string);

 implementation

 procedure PrintMessage(msg: string);

 begin

 Writeln(msg);

 end;

 end.

Unit1 defines a procedure called PrintMessage that takes a single string as an argument

and sends the string to the standard output. (In Object Pascal, routines that do not return a

value are called procedures. Routines that return a value are called functions.)

Notice that PrintMessage is declared twice in Unit1. The first declaration, under the

reserved word interface, makes PrintMessage available to other modules (such

as greeting) that use Unit1. The second declaration, under the reserved

word implementation, actually defines PrintMessage.

 When the compiler processes greeting.dpr, it automatically looks

for unit files that the greeting program depends on. The resulting

executable does the same thing as our first example: it prints the

message Hello world!

program greeting;

{$APPTYPE CONSOLE}

var MyMessage : string;

begin

MyMessage := 'Hello world!';

Writeln(MyMessage);

readln;

end.

program greeting;

{$APPTYPE CONSOLE}

var MyMessage : string;

begin

MyMessage := 'Hello world!';

Writeln(MyMessage);

readln;

end.

Program factorial;

{$APPTYPE CONSOLE}

var i, y, n :integer;

begin

 writeln('Enter a number n');

 readln(n);

 y:=1;

 for i:=1 to n do y:=y*i;

 writeln('Factorial of number ',n,' is ',y);

 readln;

end.

program hi;

{$APPTYPE CONSOLE}

const ca = 5;

 cn = 'number 5';

var name : string;

 age : byte;

begin

 writeln('What is your name?');

 readln(name);

 writeln('Hi ' ,name, ', my name is ',cn, '.');

 writeln(' How old are you, ' , name, ' ?');

 readln(age);

 writeln(name, ', your ',age-ca,' years younger

computer , ',cn,', says hi to you!');

 readln;

end.

program numbers;

{$APPTYPE CONSOLE}

var number : integer;

begin

 writeln('Enter your special number');

 readln(number);

 case number of

 7: writeln('This is really a lucky number');

 13: writeln('No, this will bring you only bad

luck');

 else writeln('Really boring number.');

 end;

 readln;

end.

program triangle;

{$APPTYPE CONSOLE}

var a,b,c : integer;

begin

Writeln('how long are the sides of your triangle?'

);

readln(a);

readln(b);

readln(c);

if (a+b)>c then begin

 if (b+c)>a then begin

 if (a+c)>b then writeln('this

triangle is real')

 else writeln('this

triangle is not real');

 end

 else writeln('this triangle is not

real');

 end

 else writeln('this triangle is not real');

readln;

end.

Declaration

This is the differnece:

When declaring variables:

var

 variablename: datatype;

When declaring constants:

const

 constantname = datatype;

Commands

Assignment

Function calls, because they return a value, can be used as expressions in assignments and

operations. For example,

I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on the left side

of an assignment statement.

I := x where x can be a value, formula or variable. I and x are of the same data type.

For example,

I := 10 I := a*b I := a

The For Loop

The for loop is a sort of repeat-until loop. The for loop, repeats a set of instructions for a
number of times. The for loop is in the form:

- If used for only one action:

for {variable}* := {original value} to/downto {final value} do

 {code...(for one action)}

- If used for more than one action:

for {variable}* := {original value} to/downto {final value} do Begin

 {code...}

 {code...}

End;

*Generally, this variable is called the 'loop counter'.

Now, an example of the for loop is shown below, but firstly, you should have an idea of

the usefulness of the for loop. Consider the following example:

using for

program usingit;

{$APPTYPE CONSOLE}

var sentence : string;

begin

sentence := 'Nooooooooooo!';

Writeln(sentence);

Writeln(sentence);

Writeln(sentence);

readln;

end.

not using for

program notusingit;

{$APPTYPE CONSOLE}

var sentence : string;

n,i : byte;

begin

sentence := ' Nooooooooooo!';

n := 3;

for i :=1 to n do

begin

Writeln(sentence);

i := i+1

end;

readln;

end.

While-Do Loop

This type of loop is executed while the condition is true. It is different from the

'Repeat-Until' loop since the loop might not be executed for at least one time. The code

works like this:

While <condition is true> do the following:

instruction 1;

instruction 2;

instruction 3;

etc...

End; {If while-do loop starts with a begin statement}

The Simple Case Statement

In some cases the 'case statement' is preferred to the if statement because it reduces

some unnecessary code but the same meaning is retained. The case statement is very

similar to the if statement, except in that the it does not accept literal conditional

expressions (i.e.: strings) but surprisingly enough, it allows single character conditional
expressions. Here is how it works:

Case {variable of type: integer or character ONLY} of

 {input statement- within inverted commas if of type char} : {code..}

 {input statement- within inverted commas if of type char} : {code..}

 ...

End; {End Case}

The Case-Else Statement

Again this is similar to the if..then..else statement.

The If Statement

The 'if statement' executes a the proceeding statement(s) conditionally. This means that if an

action comes to be true, then the statement(s) proceeding the if statement are executed, else
these statements are skipped. It works like this:

If this happens(action), then do this(reaction, if action is true).

OR:

If this happens(action), then do this(reaction, if action is true), else do this(reaction, if action is
false).

In Pascal, the 'if statement' should be written as follows:

If conditional expression then code ... ; //if one action

OR:

If conditional expression then Begin instructions ... End; //if more than one action is required

Note that you should not use an assignment statement in the 'if' construct, otherwise the compiler
will raise a syntax error. I.e.:

Wrong:

If x := 20 then x := x + 1; //the underlined character must be excluded

Correct:

If x = 20 then x := x + 1; //only an equal sign is used for comparison

 If..Then..Else

In a normal if statement, the 'reaction' cannot be performed if the condition is not true.

But in an if..then..else statement, there is at least one set of statements to be
performed. Let's take a look at the example below:

writeln('Who has discovered the land of America?');

Readln(ans);

If (ans = 'Christopher Colombus') then

 score := score + 1 //if this is false,

ELSE

 writeln('sorry, you''ve got it wrong!'); //then this is true

Note that if the 'else' term is included with an if statement, then there should beno

semi-colon before the 'else' term; just as seen in the above example.

The Repeat-Until Loop

This loop is used to repeat the execution of a set of instructions for at least one time. It

is repeated until the conditional expression is obeyed. The following example, shows the
model of the 'repeat-until' loop:

Repeat

..(code)

..(code)

..(code)

Until conditional statement;

