
Standard tab GUI components

GUI components

GUI stands for Graphical User Interface. It refers to the windows, buttons, dialogs, menus and

everything visual in a modern application. A GUI component is one of these graphical building

blocks. Delphi lets you build powerful applications using a rich variety of these components.

A rough metaphor for GUI would be the rotating handle on a MJJ market umbrella stands turning

the unseen mechanism hidden within the umbrella.

These components are grouped under a long set of tabs in the top part of the Delphi screen,

starting with Standard at the left. We'll look at this Standard tab here. It looks something like

this (Delphi allows you to tinker with nearly everything in its interface, so it may look different on

your system):

Each of the components is itemised below with a picture of a typical GUI object they can create:

 Menu PopupMenu GroupBox RadioGroup

 Label

 Edit

 Button

 CheckBox

 RadioButton

 ScrollBar

 ListBox ComboBox Panel Memo

 Frame : see text below ActionList : see text below

Note that the displayed components were taken from an XP computer. In order to get the new

XP look (the XP 'themed' GUI look), you must add the XP Manifest component to you form. It is

found under the Win32 component tab:

 XP Manifest component.

We'll now cover each of the components in turn. Components have many properties and

methods and events, but we'll keep the descriptions to the point to keep this article short

enough. Each component is added to you form by clicking it and then clicking (or dragging and

releasing) on your form.

 Frame objects

These were introduced in Delphi 5. They represent a powerful mechanism, albeit one that is a

little advanced for a Delphi Basics site. However, it is worth describing their role if you want to

research further.

A frame is essentially a new object. It is defined using the File|New menu. Only then can you

add the frame to your form using the Frame component. You can add the same frame to as

many forms of your application as you want. This is because the frame is designed as a kind of

template for a part of a form. It allows you to define the same look and feel for that part of each

form. And more importantly, each instance of the frame inherits everything from the original

frame.

For further reading, Mastering Delphi by Cantu covers this topic with example code.

 Menus

After you add a TMenu component to your form, you can design the menu by double clicking it

(or using the right button popup menu for it). You are then shown a panel with an empty menu.

As you type, you are creating the top left menu item. Press enter and you are positioned at the

first sub item of this menu item. Click the new empty box to the right of the first menu item to

create a new menu item.

In this way, you can build the menu structure.

To make each menu item do something, just double click it. Delphi will then insert code into your

program to handle the menu item, and position your cursor in the form unit ready for you to

write your code.

Explore the popup menu for the menu editor to discover more options, such as sub-menus.

A menu can also be dynamically updated by your code.

 Popup menus

A popup menu appears in many applications when you right click on something. For example,

when you right click the Windows desktop. You create a popup menu by adding the popup menu

component to your form and double clicking it. You then simply type in your menu item list.

You attach the popup menu to an existing form object (or the form itself) by selecting your new

popup menu in the PopupMenu property of the object.

To activate the popup menu items, double click each in turn. Delphi will add the appropriate code

to your form unit. You can then type in the code that each menu item should perform.

A popup menu can also be dynamically updated by your code.

 Labels

Labels are the simplest component. They are used to literally label things on a form, but the text,

colours and so on can be changed by your code. For example, you can change the label colour

when the mouse hovers over it, and can run code when the user clicks it. This makes the label

like a web page link. Normally, they are just kept as plain, unchanging text.

 Edit boxes

An edit box allows the user to type in a single line of text. For example, the name of the user.

You set up the initial value with the Text property either at design time or when your code runs.

 Memo boxes

A memo box displays a single string as a multi line wrapped text display. You cannot apply any

formatting. The displayed lines are set using the Lines property. This may be set at design time

as well as at run time.

 Buttons

A button is the simplest active item. When clicked by a user, it performs some action. You can

change the button label by setting the Caption property. Double clicking the button when

designing adds code to your form to run when the button is clicked at run time.

 Check boxes

Check boxes are used to give a user a yes/no choice. For example, whether to wrap text or not.

The label is set using the Caption property. You can preset the check box to ticked by setting

the Checked property to true.

 Radio buttons

Radio buttons are used to give a user multiple choices. For example, whether to left, centre or

right align text. The label is set using the Caption property. You can preset a radio button to

selecteded by setting the Checked property to true.

You would normally use radio buttons in groups of two or more. The TRadioGroupcomponent

allows you to do this in a neat and dynamic way.

 List boxes

List boxes provide selectable items. For example, a collection of fish names. If you set

the MultiSelect property to true, you allow the user to select more than one. The items in the

list are added using the Items.Add method, passing the string of each item as a parameter.

You can act upon an item being selected by setting the OnClick event (by double clicking it) to a

procedure in your form unit.

The following example displays the selected list item in a dialog box:

 procedure TForm1.ListBox1Click(Sender: TObject);

 var

 listBox : TListBox;

 index : Integer;

 begin

 // Cast the passed object to its correct type

 listBox := TListBox(Sender);

 // Get the index of the selected list item

 index := listBox.ItemIndex;

 // Display the selected list item value

 ShowMessage(listBox.Items[index]);

 end;

 Combo boxes

A combo box is like a list box, and is set up in the same way (see above). It just takes up less

space on your form by collapsing to a single line when deselected, showing the chosen list item.

It is not recommend to use one for multi line selection.

 Scroll bars

Many components have built in scroll bars. For those that don't, you can use this to do your own

scrolling. You link the scrollbar to your component by setting the OnScrollevent. This gives you

the details of the last scroll activity made by the user.

 Group boxes

A group box is like a panel. It differs in that it gives a name to the collection of components that

you add to it. This title is set with the Caption property. Use a group box to help the user see

what controls affect one particular aspect of the application.

 Radio group panels

Radio buttons are used to give a user a multiple choices. For example, whether to left, centre or

right align text. Unlike individual radio buttons, a group is only set up by your code. You define

the buttons by calling the Items.Add method of the TRadioGroup object, passing the caption

string of each radio button as a parameter. You can reference each button by using

the Buttons indexed property. You might, for example, choose the third button to be checked.

For example :

 // Set the third button to be pre-selected (index starts at 0)

 RadioGroup1.Buttons[2].Checked := true;

 Empty panels

When building your form, you might want to add many components. These may fall into logical

groups. If so, you can add each group to a panel, and use the panel to position the whole group

on the form. The panel name can be blanked out by setting theCaption property.

You can even hide the panel by setting the BevelOuter and BevelInner properties tobvNone.

 Action lists

Action lists are a large topic on their own. They allow you to define, for example, menus with

sub-items that are also shown as buttons on your aplication. Only one action is defined,

regardless of the number of references to it.

